Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.887
Filtrar
1.
Front Immunol ; 15: 1302031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571941

RESUMO

Introduction: Atherosclerosis is a major pathological condition that underlies many cardiovascular diseases (CVDs). Its etiology involves breach of tolerance to self, leading to clonal expansion of autoreactive apolipoprotein B (APOB)-reactive CD4+T cells that correlates with clinical CVD. The T-cell receptor (TCR) sequences that mediate activation of APOB-specific CD4+T cells are unknown. Methods: In a previous study, we had profiled the hypervariable complementarity determining region 3 (CDR3) of CD4+T cells that respond to six immunodominant APOB epitopes in most donors. Here, we comprehensively analyze this dataset of 149,065 APOB-reactive and 199,211 non-reactive control CDR3s from six human leukocyte antigen-typed donors. Results: We identified 672 highly expanded (frequency threshold > 1.39E-03) clones that were significantly enriched in the APOB-reactive group as compared to the controls (log10 odds ratio ≥1, Fisher's test p < 0.01). Analysis of 114,755 naïve, 91,001 central memory (TCM) and 29,839 effector memory (TEM) CDR3 sequences from the same donors revealed that APOB+ clones can be traced to the complex repertoire of unenriched blood T cells. The fraction of APOB+ clones that overlapped with memory CDR3s ranged from 2.2% to 46% (average 16.4%). This was significantly higher than their overlap with the naïve pool, which ranged from 0.7% to 2% (average 1.36%). CDR3 motif analysis with the machine learning-based in-silico tool, GLIPHs (grouping of lymphocyte interactions by paratope hotspots), identified 532 APOB+ motifs. Analysis of naïve and memory CDR3 sequences with GLIPH revealed that ~40% (209 of 532) of these APOB+ motifs were enriched in the memory pool. Network analysis with Cytoscape revealed extensive sharing of the memory-affiliated APOB+ motifs across multiple donors. We identified six motifs that were present in TCM and TEM CDR3 sequences from >80% of the donors and were highly enriched in the APOB-reactive TCR repertoire. Discussion: The identified APOB-reactive expanded CD4+T cell clones and conserved motifs can be used to annotate and track human atherosclerosis-related autoreactive CD4+T cells and measure their clonal expansion.


Assuntos
Aterosclerose , Linfócitos T , Humanos , Regiões Determinantes de Complementaridade/genética , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T/genética , Apolipoproteínas B , Epitopos Imunodominantes
2.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591522

RESUMO

Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRß chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Reguladores , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Peptídeos , Células Clonais
3.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618957

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinases , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Fator de Transcrição STAT5/genética
4.
Cancer Immunol Res ; 12(4): 385-386, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562081

RESUMO

All chimeric antigen receptor (CAR) T-cell products currently approved by the FDA are autologous, which poses several challenges for widespread use. In this issue, Degagné and colleagues present their preclinical research on creating off-the-shelf CAR T cells for multiple myeloma. They utilized the CRISPR/Cas12a genome editing platform and gene knock-in techniques to eliminate alloreactivity and decrease susceptibility to natural killer (NK)-cell elimination. This work has led to an ongoing phase I trial of off-the-shelf CAR T cells for multiple myeloma treatment. See related article by Degagné et al., p. 462 (2).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Imunoterapia Adotiva/métodos
5.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580329

RESUMO

BACKGROUND: Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS: We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRß (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS: The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS: In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Criança , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas/genética , Sangue Fetal , Receptores de Antígenos de Linfócitos T/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Linhagem Celular Tumoral , Recidiva
6.
Front Immunol ; 15: 1362133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558812

RESUMO

Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/terapia , Neoplasias Hematológicas/terapia , Terapia Baseada em Transplante de Células e Tecidos
8.
Signal Transduct Target Ther ; 9(1): 101, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643203

RESUMO

Strategies to improve T cell therapy efficacy in solid tumors such as hepatocellular carcinoma (HCC) are urgently needed. The common cytokine receptor γ chain (γc) family cytokines such as IL-2, IL-7, IL-15 and IL-21 play fundamental roles in T cell development, differentiation and effector phases. This study aims to determine the combination effects of IL-21 in T cell therapy against HCC and investigate optimized strategies to utilize the effect of IL-21 signal in T cell therapy. The antitumor function of AFP-specific T cell receptor-engineered T cells (TCR-T) was augmented by exogenous IL-21 in vitro and in vivo. IL-21 enhanced proliferation capacity, promoted memory differentiation, downregulated PD-1 expression and alleviated apoptosis in TCR-T after activation. A novel engineered IL-21 receptor was established, and TCR-T armed with the novel engineered IL-21 receptors (IL-21R-TCR-T) showed upregulated phosphorylated STAT3 expression without exogenous IL-21 ligand. IL-21R-TCR-T showed better proliferation upon activation and superior antitumor function in vitro and in vivo. IL-21R-TCR-T exhibited a less differentiated, exhausted and apoptotic phenotype than conventional TCR-T upon repetitive tumor antigen stimulation. The novel IL-21 receptor in our study programs powerful TCR-T and can avoid side effects induced by IL-21 systemic utilization. The novel IL-21 receptor creates new opportunities for next-generation TCR-T against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Receptores de Interleucina-21/genética , Receptores de Interleucina-21/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos
9.
J Clin Immunol ; 44(4): 93, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578360

RESUMO

Newborn screening (NBS) for severe inborn errors of immunity (IEI), affecting T lymphocytes, and implementing measurements of T cell receptor excision circles (TREC) has been shown to be effective in early diagnosis and improved prognosis of patients with these genetic disorders. Few studies conducted on smaller groups of newborns report results of NBS that also include measurement of kappa-deleting recombination excision circles (KREC) for IEI affecting B lymphocytes. A pilot NBS study utilizing TREC/KREC detection was conducted on 202,908 infants born in 8 regions of Russia over a 14-month period. One hundred thirty-four newborns (0.66‰) were NBS positive after the first test and subsequent retest, 41% of whom were born preterm. After lymphocyte subsets were assessed via flow cytometry, samples of 18 infants (0.09‰) were sent for whole exome sequencing. Confirmed genetic defects were consistent with autosomal recessive agammaglobulinemia in 1/18, severe combined immunodeficiency - in 7/18, 22q11.2DS syndrome - in 4/18, combined immunodeficiency - in 1/18 and trisomy 21 syndrome - in 1/18. Two patients in whom no genetic defect was found met criteria of (severe) combined immunodeficiency with syndromic features. Three patients appeared to have transient lymphopenia. Our findings demonstrate the value of implementing combined TREC/KREC NBS screening and inform the development of policies and guidelines for its integration into routine newborn screening programs.


Assuntos
Linfopenia , Imunodeficiência Combinada Severa , Lactente , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Projetos Piloto , Linfopenia/diagnóstico , Linfócitos T , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , DNA , Receptores de Antígenos de Linfócitos T/genética
10.
J Med Virol ; 96(3): e29539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516755

RESUMO

Despite extensive research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination responses in healthy individuals, there is comparatively little known beyond antibody titers and T-cell responses in the vulnerable cohort of patients after allogeneic hematopoietic stem cell transplantation (ASCT). In this study, we assessed the serological response and performed longitudinal multimodal analyses including T-cell functionality and single-cell RNA sequencing combined with T cell receptor (TCR)/B cell receptor (BCR) profiling in the context of BNT162b2 vaccination in ASCT patients. In addition, these data were compared to publicly available data sets of healthy vaccinees. Protective antibody titers were achieved in 40% of patients. We identified a distorted B- and T-cell distribution, a reduced TCR diversity, and increased levels of exhaustion marker expression as possible causes for the poorer vaccine response rates in ASCT patients. Immunoglobulin heavy chain gene rearrangement after vaccination proved to be highly variable in ASCT patients. Changes in TCRα and TCRß gene rearrangement after vaccination differed from patterns observed in healthy vaccinees. Crucially, ASCT patients elicited comparable proportions of SARS-CoV-2 vaccine-induced (VI) CD8+ T-cells, characterized by a distinct gene expression pattern that is associated with SARS-CoV-2 specificity in healthy individuals. Our study underlines the impaired immune system and thus the lower vaccine response rates in ASCT patients. However, since protective vaccine responses and VI CD8+ T-cells can be induced in part of ASCT patients, our data advocate early posttransplant vaccination due to the high risk of infection in this vulnerable group.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Vacinação , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Receptores de Antígenos de Linfócitos T/genética , Anticorpos Antivirais
11.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508137

RESUMO

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Assuntos
Carcinoma Hepatocelular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia , Terapia Baseada em Transplante de Células e Tecidos , Proteínas de Choque Térmico HSP40/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética
12.
Methods Cell Biol ; 183: 115-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548409

RESUMO

The highly diverse T cell receptor (TCR) repertoire is a crucial component of the adaptive immune system that aids in the protection against a wide variety of pathogens. This TCR repertoire, comprising the collection of all TCRs in an individual, is a valuable source of information on both recent and ongoing T cell activation. Cancer cells, like pathogens, have the ability to trigger an adaptive immune response. However, because cancer cells use a variety of strategies to escape immune responses, this is often insufficient to completely eradicate them. As a result, immunotherapy is a promising treatment option for cancer patients. This treatment is expected to increase T cell activation and subsequently alter the TCR repertoire composition in these patients. Monitoring TCR repertoires before and after immunotherapy can therefore provide additional insight into T cell responses and might identify cancer-associated TCR sequences. Here we present a computational strategy to identify those changes in the TCR repertoire that occur after treatment with immunotherapy. Since this method allows the identification of TCR patterns that might be treatment-associated, it can help future research by revealing those patterns that are related with response. This TCR analysis workflow is illustrated using public data from three different cancer patients who received anti-PD-1 treatment.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia/métodos
13.
Methods Cell Biol ; 183: 143-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548410

RESUMO

Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT137-45-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.


Assuntos
Leucócitos Mononucleares , Neoplasias , Humanos , Epitopos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos
14.
Sci Signal ; 17(826): eadd4671, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442200

RESUMO

Cells rely on activity-dependent protein-protein interactions to convey biological signals. For chimeric antigen receptor (CAR) T cells containing a 4-1BB costimulatory domain, receptor engagement is thought to stimulate the formation of protein complexes similar to those stimulated by T cell receptor (TCR)-mediated signaling, but the number and type of protein interaction-mediating binding domains differ between CARs and TCRs. Here, we performed coimmunoprecipitation mass spectrometry analysis of a second-generation, CD19-directed 4-1BB:ζ CAR (referred to as bbζCAR) and identified 128 proteins that increased their coassociation after target engagement. We compared activity-induced TCR and CAR signalosomes by quantitative multiplex coimmunoprecipitation and showed that bbζCAR engagement led to the activation of two modules of protein interactions, one similar to TCR signaling that was more weakly engaged by bbζCAR as compared with the TCR and one composed of TRAF signaling complexes that was not engaged by the TCR. Batch-to-batch and interindividual variations in production of the cytokine IL-2 correlated with differences in the magnitude of protein network activation. Future CAR T cell manufacturing protocols could measure, and eventually control, biological variation by monitoring these signalosome activation markers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Antígenos CD19/genética , Membrana Celular , Receptores de Antígenos de Linfócitos T/genética
15.
Front Immunol ; 15: 1315283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510235

RESUMO

Background: In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods: We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCRED) and permanently disrupted LAG3, TIM-3 or 2B4 genes (IRKO) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCRED-IRKO and IR competent (TCRED-IRCOMP) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro. Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results: We show that upon chronic stimulation, TCRED-IRKO cells are superior to TCRED-IRCOMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo. Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion: These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.


Assuntos
Linfócitos T CD8-Positivos , Mieloma Múltiplo , Humanos , Receptor Celular 2 do Vírus da Hepatite A/genética , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Microambiente Tumoral
16.
Biochem Biophys Res Commun ; 709: 149820, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547605

RESUMO

While the relationship between single receptor lymphocytes and cancer has been deeply researched, the origin and biological roles of dual receptor lymphocytes in tumor microenvironment (TME) remain largely unknown. And since nasopharyngeal carcinoma (NPC) is a type of cancer closely associated with immune infiltration, studying the TME of NPC holds particular significance. Utilizing single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA + TCR + BCR-seq), we analyzed data from 7 patients with NPC and 3 patients with nasopharyngeal lymphatic hyperplasia (NLH). In our research, it was firstly found that the presence of dual receptor lymphocytes in both the TME of NPC and the inflammatory environment of NLH. We also confirmed their clonal expansion, suggesting their potential involvement in the immune response. Subsequently, we further discovered the lineage and the pairing characteristics. It was found that the dual receptor lymphocytes in NPC and NLH mainly originate from memory cells, and the predominant pairing type for dual TCR was ß+α1+α2 and dual BCR was heavy+κ+λ. By further analyzing their gene expression, we compared the function of dual receptor cells with single receptor cells in the context of both NPC and NLH. This groundbreaking research has enhanced our comprehension of the features of dual-receptor cells and has contributed to a better understanding of the TME in NPC. By comparing with NLH, it illuminates part of the alterations in the process of malignant transformation in NPC. These findings present the potential to acquire improved diagnostic markers and treatment modalities.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Hiperplasia/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos B , Receptores de Antígenos de Linfócitos B/genética , Proteínas de Transporte/genética , Microambiente Tumoral/genética , Expressão Gênica , Análise de Célula Única
17.
Front Immunol ; 15: 1345467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504980

RESUMO

The vast diversity of mammalian adaptive antigen receptors allows for robust and efficient immune responses against a wide number of pathogens. The antigen receptor repertoire is built during the recombination of B and T cell receptor (BCR, TCR) loci and hypermutation of BCR loci. V(D)J recombination rearranges these antigen receptor loci, which are organized as an array of separate V, (D), and J gene segments. Transcription activation at the recombining locus leads to changes in the local three-dimensional architecture, which subsequently contributes to which gene segments are utilized for recombination. The endogenous retrovirus (ERV) mouse mammary tumor provirus 8 (Mtv8) resides on mouse chromosome 6 interposed within the large array of light chain kappa V gene segments. As ERVs contribute to changes in genomic architecture by driving high levels of transcription of neighboring genes, it was suggested that Mtv8 could influence the BCR repertoire. We generated Mtv8-deficient mice to determine if the ERV influences V(D)J recombination to test this possibility. We find that Mtv8 does not influence the BCR repertoire.


Assuntos
Receptores de Antígenos de Linfócitos T , Recombinação V(D)J , Animais , Camundongos , Imunoglobulinas/genética , Mamíferos , Receptores de Antígenos de Linfócitos T/genética , Recombinação V(D)J/genética
18.
Nat Commun ; 15(1): 2194, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467629

RESUMO

The regulation of thymocyte development by RNA-binding proteins (RBPs) is largely unexplored. We identify 642 RBPs in the thymus and focus on Arpp21, which shows selective and dynamic expression in early thymocytes. Arpp21 is downregulated in response to T cell receptor (TCR) and Ca2+ signals. Downregulation requires Stim1/Stim2 and CaMK4 expression and involves Arpp21 protein phosphorylation, polyubiquitination and proteasomal degradation. Arpp21 directly binds RNA through its R3H domain, with a preference for uridine-rich motifs, promoting the expression of target mRNAs. Analysis of the Arpp21-bound transcriptome reveals strong interactions with the Rag1 3'-UTR. Arpp21-deficient thymocytes show reduced Rag1 expression, delayed TCR rearrangement and a less diverse TCR repertoire. This phenotype is recapitulated in Rag1 3'-UTR mutant mice harboring a deletion of the Arpp21 response region. These findings show how thymocyte-specific Arpp21 promotes Rag1 expression to enable TCR repertoire diversity until signals from the TCR terminate Arpp21 and Rag1 activities.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Diferenciação Celular/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Timócitos/metabolismo , Timo/metabolismo
19.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38483254

RESUMO

The extraordinary diversity of T cells and B cells is critical for body maintenance. This diversity has an important role in protecting against tumor formation. In humans, the T-cell receptor (TCR) repertoire is generated through a striking stochastic process called V(D)J recombination, in which different gene segments are assembled and modified, leading to extensive variety. In ovarian cancer (OC), an unfortunate 80% of cases are detected late, leading to poor survival outcomes. However, when detected early, approximately 94% of patients live longer than 5 years after diagnosis. Thus, early detection is critical for patient survival. To determine whether the TCR repertoire obtained from peripheral blood is associated with tumor status, we collected blood samples from 85 women with or without OC and obtained TCR information. We then used machine learning to learn the characteristics of samples and to finally predict, over a set of unseen samples, whether the person is with or without OC. We successfully stratified the two groups, thereby associating the peripheral blood TCR repertoire with the formation of OC tumors. A careful study of the origin of the set of T cells most informative for the signature indicated the involvement of a specific invariant natural killer T (iNKT) clone and a specific mucosal-associated invariant T (MAIT) clone. Our findings here support the proposition that tumor-relevant signal is maintained by the immune system and is coded in the T-cell repertoire available in peripheral blood. It is also possible that the immune system detects tumors early enough for repertoire technologies to inform us near the beginning of tumor formation. Although such detection is made by the immune system, we might be able to identify it, using repertoire data from peripheral blood, to offer a pragmatic way to search for early signs of cancer with minimal patient burden, possibly with enhanced sensitivity.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Linfócitos B , Aprendizado de Máquina , Recombinação V(D)J , Receptores de Antígenos de Linfócitos T/genética
20.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38478393

RESUMO

SUMMARY: Knowledge of immunoglobulin and T cell receptor encoding genes is derived from high-quality genomic sequencing. High-throughput sequencing is delivering large volumes of data, and precise, high-throughput approaches to annotation are needed. Digger is an automated tool that identifies coding and regulatory regions of these genes, with results comparable to those obtained by current expert curational methods. AVAILABILITY AND IMPLEMENTATION: Digger is published under open source license at https://github.com/williamdlees/Digger and is available as a Python package and a Docker container.


Assuntos
Receptores de Antígenos de Linfócitos T , Software , Receptores de Antígenos de Linfócitos T/genética , Mapeamento Cromossômico , Imunoglobulinas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...